RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SIXTH SEMESTER EXAMINATION, MAY 2016

THIRD YEAR [BATCH 2013-16]

CHEMISTRY (Honours)

Date : 07/05/2016 Time : 11 am - 1 pm

Paper : VIII

Full Marks : 50

[2]

[3]

[1]

[2]

[1+1]

[Use a separate Answer Book for each group]

<u>Group – C</u>

[Attempt one question from each Unit]

<u>Unit – I</u>

1.	a)	If the single electron spin-orbit coupling constant of $4f^6$ species is 1415 cm ⁻¹ , calculate the energy difference between J-th and (J+1)-th level and hence suggest with explanation the μ_1 relation	
		which can be used for the magnetic moment.	[2+2]
	b)	Why is it difficult to separate compounds of lanthanide elements? What methods have been used and which of these is still used? [1	+2+1]
	c)	Describe the selection rules for electronic transition.	[2]
	d)	Calculate the percent of transmission of incident light from a test solution if absorbance of that solution is 0.30 . What is molar extinction co-efficient?	[2]
	e)	Give two examples of metal carbonyl clusters with structural formula.	[1]
2.	a)	Calculate the magnetic moment of $\operatorname{Er}^{+3}(4f^{11})$.	[3]
	b)	'Lanthanides and actinides show significant difference in their oxidation states' —Justify or contradict.	[2]
	c)	What is the lanthanide contraction and what are its consequences?	[1+1]
	d)	Counting cluster electrons, predict the expected structures of the following :	
		$Fe_5C(CO)_{15}$, $Os_5(CO)_{16}$, $Rh_7(CO)_{16}^{3-}$	[3]
	e)	The colour of transition metal complexes with tetrahedral geometry is more intense than octahedral geometry. —Explain	[2]
	f)	Mention an important use of f-block elements in chemistry.	[1]
		<u>Unit – II</u>	
3.	a)	What is supramolecular chemistry? Give a brief outline of a the various types of chemical forces which are present in supramolecules.	[1+3]
	b)	Mention and briefly explain two applications of nanoparticles.	[1+1]
	c)	Why small molecule sensors are important in biological systems for monitoring the metal ions at low concentrations?	[2]
	d)	How will you prepare nanoparticles by the sol-gel method?	[2]

- e) What type of potential energies are stored in an explosive material?
- 4. a) 'The explosion reactions are generally redox reactions with $E_{cell}^{o} \ge 1.0$ volt '—Justify the statement giving two examples and the relevant explosion reactions.
 - b) What is RDX? What is its structure?
 - c) Why are nanoparticles generally found to be more reactive in comparison to their bulk analogue? [2]
 - d) Mention the names of four reducing agents commonly used for the synthesis of noble metal (Ag, Au, Pt etc) nanoparticles.
 - e) 'Lead azide is an explosive but sodium azide is not' —explain.
 - f) Define 'high explosive' and 'low explosives'.

<u>Group - D</u>

[Attempt one question from each Unit]

<u>Unit – III</u>

5.	a)	Give outlines of the analytical procedures for estimation of the following materials.i) As in water sampleii) CO in air sample	[3+3]		
	b)	State the principle of least-square. Apply this principle to obtain the best straight line of slope m and intercept c.	[4]		
	,	The "differential migration phenomenon" is responsible for the separation of components from their mixtures in different types of chromatography —Explain.	[2]		
	d)	What are the major constituents of SPM in urban air?	[1]		
6.	a)	What do you mean by DO of a water sample? Describe the method of determination of DO of a water sample.	[1+3]		
	b)	A sample is known to contain $49.06 \pm 0.02\%$ of a given constituent X. The results obtained by two observers using the same substance and the same general technique are : Observer 1 : 49.01 , 49.21 , 49.08			
		Observer 2 : 49·40, 49·44, 49·42			
		Compare the precision of the set of results obtained by each observer.	[4]		
	c)	Discuss the principle for the spectrophotometric estimation of lead in a sample of water.	[3]		
	d)	Mention an advantage and a disadvantage of TLC over paper chromatography.	[2]		
<u>Unit – IV</u>					
7.	a)	What do you mean by masking and de-masking agent in connection with complexometric titration? Discuss with suitable example.	[3]		
	b)	Calculate the percentage of iron in sample, when 0.2010 gm of iron sample was dissolved and iron was precipitated as hydroxide on farther ignition and weighing gave 0.11069 gm as ferric oxide.	[3]		
	c)	The permanganate end point is not permanent in permanganometric titrations —Explain with	[-]		
		reaction.	[3]		
	d)	Calculate the ratio of the equivalent weights for $KH(IO_3)_2$ when it participates in both acid-base and redoc reactions.	[2]		
	e)	Name a hexadentate ligand to be used in complexometric titrations as an alternative for EDTA.	[1]		
8.	ŕ	How does metal-ion indicator act in complexometric titration. Outline the procedure for estimation of Cu and Zn in a mixture complexometrically.	[3+3]		
	b)	0.20gm of an ore containing MnO ₂ was treated with excess hydrochloric acid. The Cl ₂ formed was distilled off and absorbed in KI solution. Titration of the liberated iodine consumed 42.5ml of 0.052N sodium thiosulphate solution. Calculate the percentage of MnO ₂ in the ore.	[3]		
	c)	Which one of the common mineral acids is used for the dissolution of a sample of brass for	[~]		
		chemical analysis? Give reason for your answer.	[3]		

_____×_____